学校主站

抓质量,上水平,创特色

Pay attention to quality, improve level and create characteristics

研究生教育
当前位置: 首页 > 研究生教育 > 导师风采 > 正文

朱闻君

来源: 时间:2022年02月21日 16:11 编辑:swzy2 点击:

个人简介模板

姓名:

朱闻君  

办公地址:

联系电话:

电子邮箱:

zhuwenjun2002@163.com

简要描述

本实验室主要从事:(1)植物病害真菌灰葡萄孢(Botrytis cinerea)分泌蛋白的功能研究;(2)十字花科植物炭疽菌希金斯刺盘孢(Colletotrichum higginsianum)致病相关基因的功能研究;(3)植物与病原微生物互作的分子机理研究;(4)药食两用真菌茯苓(Wolfiporia cocos)的基因功能研究。

教育经历

201410—20172月:Tel-Aviv UniversityDepartment of Molecular Biology and Ecology of Plants, Faculty of Life Science,博士后;

20069—201212月:华中农业大学,植物科技学院,植物病理,博士;

20029—20066月:华中师范大学,生命科学学院,生物技术,本科学士。

工作经历

201410-20172月:以色列特拉维夫大学 (Tel-Aviv University),博士后,从事:1)植物病害真菌灰葡萄孢(Botrytis cinerea)致病相关分泌蛋白的筛选及其致病机理研究;(2)植物内生菌诱导植物抗逆机理的研究;

20201至今:买球平台官方网站,生命科学与技术学院,副教授;

201212201912买球平台官方网站,生命科学与技术学院,讲师。

研究方向:

1)植物病害真菌灰葡萄孢(Botrytis cinerea)分泌蛋白的功能研究;(2)十字花科植物炭疽菌希金斯刺盘孢(Colletotrichum higginsianum)致病相关基因的功能研究;(3)植物与病原微生物互作的分子机理研究;(4)药食两用真菌茯苓(Wolfiporia cocos)的基因功能研究。

主要承担的科研项目:

1主持国家自然科学基金面上项目:弱活性小分子分泌蛋白BC1G_01444在灰葡萄孢与植物互作过程中的功能机理研究(31972215),57万,2020.01-2023.12

2主持国家自然科学基金青年科学基金项目:致病相关分泌蛋白BC1G_08363BC1G_15201在灰葡萄孢致病过程中的作用及其机理研究(31501587),22.8万,2016.01-2018.12

3合作参与国家自然科学基金面上项目:甾醇氧乙酰基转移酶(SOAT)在茯苓酸生物合成途径中的功能解析(81872948),57, 2019.01-2022.12

4合作参与2018年度国家自然科学基金委员会与以色列科学基金会合作研究项目:利用真菌病毒研究葡萄孢和植物的相互作用(31861143043),160万,201911-20211231日。

5主持湖北省农业科学院植保土肥研究所开放基金课题:小分子分泌蛋白BC1G_01016在灰葡萄孢与植物互作过程中的功能机理研究(2018ZTSJJ14),4万,201810-20209月。

6主持横向项目:中药材及其致病菌组学相关研究(whpu-2018-cg-138),5万,201911-20201231日。

代表性论文与著作

通讯作者(*)或第一作者:

1. Liu H, Jing N, Li F, Wang K, Tang J, Zhao Q, Zhang Y, Noushahi HA, Xu R, Wang X, Zhu W*, Feng S*, Shu S*, Mei Z. (2024). An omics-based characterization of Wolfiporia cocos reveals three CYP450 members involved in the biosynthetic pathway of pachymic acid. Communications Biology. 7: 666.

2. Zhu W, Dong H, Xu R*, You J*, Yan D-z, Xiong C, Wu J, Bi K*. (2023). Botrytis cinerea BcCDI1 protein triggers both plant cell death and immune response. Frontiers in Plant Science. 14: 1136463.

3. Zhu W*, Yu M, Xu R, Bi K, Yu S, Xiong C, Liu Z, Sharon A, Jiang D, Wu M, Gu Q, Gong L, Chen W, Wei W*. (2022). Botrytis cinerea BcSSP2 protein is a late infection phase, cytotoxic effector. Environmental Microbiology. 24(8): 3420–3435.

4. Zhu W, Liu Y, Tang J, Liu H, Jing N, Li F, Xu R*, Shu S*. (2022). Functional analysis of sterol O-acyltransferase involved in the biosynthetic pathway of pachymic acid in Wolfiporia cocos. Molecules. 27: 143.

5. 周鹏,朱闻君*. (2020). 湖北枣阳烟区烟叶赤星病病原鉴定. 安徽农业科学,J. Anhui Agric. Sci. 48(3): 146-148, 192.

6. Zhu W, Xu X, Peng F, Yan D, Zhang S, Xu R, Wu J, Li X, Wei W*, Chen W*. (2019). The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Plant Science. 283: 1–10.

7. Zhu W*, Wei W, Zhang S, Zheng Y, Chen P, Xu X. (2018). The phosphatome of medicinal and edible fungus Wolfiporia cocos. Current Microbiology. 75: 124–131.

8. Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Sharon I, Savidor A, Eizner E, Valerius O, Braus G, Bowler K, Bar-Peled M, Sharon A*. (2017). BcXYG1, a secreted xyloglucanase from Botrytis cinerea, triggers both cell death and plant immune responses. Plant Physiology. 175: 438–456.

9. Zhu W*, Wei W, Wu Y, Zhou Y, Peng F, Zhang S, Chen P, Xu X. (2017). BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production, and stress tolerance in Botrytis cinerea. Frontiers in Microbiology. 8: 1807.

10. Zhu W*, Zhou M, Xiong Z, Peng F, Wei W*. (2017). The cAMP-PKA signaling pathway regulates pathogenicity, hyphal growth, appressorial formation, conidiation, and stress tolerance in Colletotrichum higginsianum. Frontiers in Microbiology. 8: 1416.

11. Wei W, Shu S, Zhu W*, Xiong Y, Peng F. (2016). The kinome of edible and medicinal fungus Wolfiporia cocos. Frontiers in Microbiology. 7: 1495.

12. Wei W, Xiong Y, Zhu W*, Wang N, Yang G, Peng F. (2016). Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: role in growth, cell wall integrity, colony melanization and pathogenicity. Frontiers in Microbiology. 7: 1212.

13. Zhang S, Hu B, Wei W, Xiong Y, Zhu W*, Peng F, Yu Y, Zheng Y, Chen P*. (2016). De novo analysis of Wolfiporia cocos transcriptome to reveal the differentially expressed carbohydrate-active enzymes (CAZymes) genes during the early stage of sclerotial growth. Frontiers in Microbiology. 7: 83.

14. Wu Y, Zhu W (Co-first author), Wei W, Zhao X, Wang Q, Zeng W, Zheng Y, Chen P*, Zhang S*. (2016). De novo assembly and transcriptome analysis of sclerotial development in Wolfiporia cocos. Gene. 588: 149–155.

15. Sun Q, Wei W, Zhu W*, Zhang S, Song J, Zheng Y, Chen P*. (2015). Genetic diversity of Chinese Wolfiporia cocos cultivars revealed by phenotypic traits and ISSR markers. Mycological Progress. 14: 61.

16. Sun Q, Wei W, Zhao J, Song J, Peng F, Zhang S, Zheng Y, Chen P, Zhu W*. (2015). An efficient PEG/CaCl2-mediated transformation approach for the medicinal fungus Wolfiporia cocos. Journal of Microbiology and Biotechnology. 25: 1528–1531.

17. Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D*. (2013). A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE. 8: e53901.

非通讯作者或非第一作者:

1. Wang P, Wang Y, Hu Y, Chen Z, Han L, Zhu W, Tian B, Fang A, Yang Y, Bi C, Yu Y. (2024). Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. Plant J. 118: 90–105.

2. Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W. (2022). A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun. 13: 2213.

3. Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W, Masrati G, Sharon A* (2021). The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat Commun. 12: 2166.

4. Doehlemann G*, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. Microbiol Spectrum 5(1): FUNK-0023-2016. doi: 10.1128/microbiolspec.FUNK-0023-2016.

5. Liu X, Wei W*, Zhu W, Su L, Xiong Z, Zhou M, Zheng Y, Zhou D-X* (2017) Histone deacetylase AtSRT1 regulates metabolic flux and stress response in Arabidopsis. Mol Plant. 10: 1510–1522.

6. Yu Y*, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W (2017) Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Mol Plant Pathol 18: 1052–1061.

7. Eizner E, Ronen M, Gur Y, Gavish A, Zhu W, Sharon A* (2017) Characterization of Botrytis-plant interactions using PathTrack© - an automated system for dynamic analysis of disease development. Mol Plant Pathol 18: 503–512.

8. Wei W, Zhu W, Cheng J, Xie J, Jiang D, Li G, Chen W, Fu Y* (2016) Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci Rep 6: 24325.

9. Shlezinger N, Israeli M, Mochly E, Oren-Young L, Zhu W, Sharon A* (2016) Translocation from nuclei to cytoplasm is necessary for anti A-PCD activity and turnover of the Type II IAP BcBir1. Mol Microbiol 99: 393–406.

10. Zhang S, Wang R, Zeng W, Zhu W, Zhang X, Wu C, Song J, Zheng Y, Chen P* (2015) Resource investigation of traditional medicinal plant Panax japonicus (T.Nees) C.A. Mey and its varieties in China. J Ethnopharmacol 166: 79–85.

11. Zhang S, Wu Y, Jin J, Hu B, Zeng W, Zhu W, Zheng Y*, Chen P* (2015) De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoi saponin biosynthesis. Biochem Bioph Res Co 466: 450–455.

      12.Wei W, Zhu W, Cheng J, Xie J, Li B, Jiang D, Li G, Yi X, Fu Y* (2013)         CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasit         ism and conidiation by sclerotial parasite Coniothyrium minitans. Appl En         viron Microb 79: 3658–3666.